Organized Multi-scale Precipitating Convection and the Global Circulation

Mitchell W. Moncrieff NCAR, USA

Workshop on *High-resolution Climate Modeling,* International Centre for Theoretical Physics, Trieste, Italy, August 10-14, 2009

Organized convection and global models

- The amount and distribution of precipitation is strongly affected by convective organization
- We know much about convective organization as a process, much less about its large-scale effects and, especially, how it is represented in global models
- This state-of-affairs is changing in accord with models with resolution high enough to explicitly represent the mesoscale circulations associated with

Traditional parameterization

Reality

Three forms of energy

The 3 energies (available potential energy; kinetic energy involving shear, work done by the pressure gradient) define 2 key quantities:

$$E = \frac{\Delta p}{\rho \frac{1}{2} (U_0 - c)^2}$$

$$R = \frac{CAPE}{\frac{1}{2}(U_0 - c)^2}$$

Traditionally:

Moist convection in global models represented solely by cumulus parameterization

Nowadays, explicit approaches:

- Cloud-system resolving models (CRM; ~ 1 km grid) with computational domains up to global simulate meso-convective organization
- Large Eddy Simulation (LES; 100 m grids) resolves cumulus in domains ~ 200 km x 200 km
- Global NWP models; grid-scale circulations (under-resolved organization) occur along with cumulus parameterization
- Super-parameterization: 2-D organization represented by CRMs

Cumulus parameterization remains an issue for climate models

Representing convective cloud systems of scale L in numerical models with grid-length ____

Convective organization simulated with 100-m grid, an LES/CRM approach

 $\Delta\Box$ L

Courtesy: Marat Khairoutdinov, SUNY/Stoney Brook & CMMAP

Weather as an initial-value problem for climate

Simulation of MJO with NICAM:

MJO event: 15 Dec 2006 – 15 Jan 2007

Specified SST

Courtesy: The NICAM Team

31DEC2006 09:00 JST

MTSAT-1R 3.5-km run

Superparameterization

MJO in the Community Atmospheric Model

Conventional parameterization

Superparameterization

Khairoutkinov et al (2005)

MCS-like propagating systems in the CRM domains embedded in the global-grid

Courtesy: Marat Khairoutdinov

Nested Tropical Channel Modeling

Tropical Channel Model (36-km grid)

Upscale effects of organized convection and the MJO

Can MJO evolve by virtue of an "upscale cascade" of energy and momentum?

MCS-like & supercluster-like organization in a 2-D global-scale CRM

Grabowski and Moncrieff (2001)

MJO-like & supercluster-like organization in a superparameterized global model

Vertical structure of the eastward propagating supercluster-like system

Dynamical model of organized convection interlocked with a Rossby-gyre circulation

Grabowski (2001) Moncrieff (2004)

Upscale effects of MCS/superclusters on MJO

$$\begin{split} \overline{U}_{t} - y\overline{V} + \overline{P}_{X} &= F^{U} - d_{m}\overline{U} \\ y\overline{U} + \overline{P}_{y} &= 0 \\ \overline{\theta}_{t} + \overline{W} &= F^{\theta} - d_{\theta} + \overline{S}_{\theta} \\ \overline{P}_{z} &= \overline{\theta} \\ \overline{U}_{X} + \overline{V}_{y} + \overline{W}_{z} &= 0 \\ F^{U} &= -\overline{(v'u')}_{y} - \overline{(w'u')}_{z} \\ F^{\theta} &= -\overline{(v'\theta')}_{y} - \overline{(w'\theta')}_{z} \end{split}$$

Biello, Majda and Moncrieff (2007)

Comment ...

 We have still to demonstrate the upscale cascade hypothesis for the MJO operates in full-physics prediction models

 Being addressed by the UK Cascade project and by NCAR Channel Model experiments

Improving convective parameterization

Representing MCS

Climate models: traditional

△ ~ Weather models: hybrid

Improved MJO in ECMWF model

Do "grid-scale" circulations (under-resolved mesoscale organization) play a positive role? (Yes)

vs
Do convective parameterizations suppress organization? (Yes)

MCS downstream of mountains

Continental US

W. Africa

Laing and Fritsch (1997)

MCS downstream of mountains

Downdraft triggering

Lifting by downdraft outflow triggers new round of convection

Numerical simulation of summertime organized convection over the continental US

Meridionally averaged rain-rate

Parameterized & explicit precipitation

Resolution dependence

$$\Delta = 3 \text{ km}$$

$$\Delta = 10 \text{ km}$$

 $\Delta = 30 \text{ km}$

3-km & 10-km -- similar convective organization, amplitude too weak in 10 km 30-km - unrealistic

Global importance of MCS

Convective parameterizations do not represent organized dynamics

a)

Isolated convection, single grid volume

- Entraining plume (turbulent mixing)
- No environmental shear
- Local response
- Closed system
- Weak scale-interaction
- No gravity waves

Organized convective system, many grid volumes

- Organized flow (mesoscale dynamics)
- Environmental shear
- Local and remote response
- Open system
- Strong scale-interaction
- Convectively-generated gravity waves

Conclusions

- MCS-type convective organization occurs at different scales in explicit models
- •Scale-gap of traditional convective parameterization been bridged, realistic mesoscale circulations in explicit models even 10-km-grid models
- Meso-convective organization (mesoscale dynamics) spontaneous in: global CRMs, superparameterized models (MMF), tropical channel models
- Relevant for seamless climate prediction, especially in terms of the distribution of precipitation and the diurnal cycle
- Meso-convective dynamics an important element of the "upscale cascade"
- Mesoscale circulations in 10-km-grid climate models occur as a hybrid parameterization, an improvement over traditional parameterization
- Challenge: representing meso-convective organization in traditional parameterizations